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Abstract: Benzyne is shown to add elemental sulfur and
give rise to a series of polysulfane compounds. A computa-
tional and experimental study is presented. Odd-membered
o-C6H4Sx rings (x ) 1-8), except x ) 1, which suffers from
ring strain, have enhanced stability compared to even-
membered rings. The acquisition of “odd-even” data may
shed new light, revealing patterns on polysulfane stability
and structure.

We present the study of a reaction that can make
ortho-fused polysulfur chemical bonds. o-Benzopoly-
sulfanes possess antitumor and antimicrobial activity.1
Previous research has demonstrated that elemental
sulfur can react with unsaturated chemical groups such
as benzyne2,3 and alkynes.4-6 A reaction where thian-
threne (1) and benzopentathiepin (2, o-C6H4S5) are
formed utilizing o-benzyne as a precursor has been
established previously by Nakayama et al. (Scheme 1).2,3

The report suggested an initial formation of benzothiirene
(3, o-C6H4S) or benzodithiete (4, o-C6H4S2) intermedi-
ates.2,3 A more detailed study of the o-benzyne-elemental
sulfur reaction has not yet appeared. The study of
o-benzyne with elemental sulfur is presented here that
provides evidence for the decomposition of an initial
o-C6H4S8 intermediate (5) to give thianthrene 1, penta-
thiepin 2, trithiole 6, and tetrathiocin 7 products (Scheme
2).

Various heterocycles may be expected to arise from the
reaction of o-benzyne with cyclic S8. B3LYP/6-31G(d)
calculations are used to predict the stability of possible
ortho-fused heterocycles, o-C6H4Sx (where x ) 1-8). Low-
energy conformers of the rings containing up to 8 sulfurs
were identified by a search of conformational space. An
oscillation pattern emerges in the relative stability of
these heterocycles (Figure 1). The odd-membered o-C6H4Sx

rings (except x ) 1, which suffers from ring strain) have
enhanced conformational stability compared to the even-
membered rings.

Figure 1 is a measure of the stability of o-C6H4Sx. We
compared the energy difference of o-C6H4S8 5 relative to
o-C6H4Sx plus a fraction of cyclic S8’s energy in an
isodesmic reaction. Compounds o-C6H4S7 and o-C6H4S5

possess staggered lone-pair electrons in the stable crown
and chair forms, respectively. The five-membered ring
molecule o-C6H4S3 adopts a stable half-chair conforma-
tion. Lone-pair interactions in polysulfur systems are
known.7 Sulfur lone pairs are in nonequivalent orbitals:
one pair in the 3p orbital (axial to the plane of the
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molecule) and the other in an sp (equatorial) orbital.
Sulfur also possesses a vacant σ* orbital.

The conformations in o-C6H4Sx (x ) 3, 5, 7) can better
adopt gauche interactions, whereas eclipsing interactions
occur in the even-numbered cases. The extent of eclipsing
is measured by comparison of the polysulfur torsion angle
(θ ) S1-S2-S3-S4) in o-C6H4Sx as positive or negative
to the pentathiepin θ angle of 73.0° as a reference point
described as |∆θ|. Figure 2 reveals that the conformations
for the even-membered rings exhibit enhanced eclipsing
strain with higher |∆θ| values. The origin of the oscil-
lating feature in Figure 1 is also likely the result of the

overlap in the p-orbitals for the odd- vs even-membered
rings. With o-C6H4Sx (x ) 3, 5, 7), an even number of out-
of-phase overlaps is achieved, whereas with o-C6H4Sx

(x ) 2, 4, 6, 8), an odd number of out-of-phase overlaps
is achieved (e.g., compare structures A and B). Even vs
odd out-of-phase overlap in o-C6H4Sx (x ) 1-8) is
reminiscent of Hückel and Möbius π electron systems.
Similar “odd-even” trends may apply to allotropes of
elemental sulfur but are not described in the literature.

Described below is an experimental study of the
o-benzyne-Sx reaction. The identification of o-C6H4S5 2
and o-C6H4S3 6 as products is based on an NMR and GC/
MS analysis. Formation of o-C6H4S2 4 is suggested on
the basis of a secondary reaction that traps o-benzyne to
give thianthrene 1 as well as a o-C6H4S2 4 dimerization
process to give tetrathiocin 7 (Scheme 2B).

Benzyne was generated by low-temperature (-60 °C
reaction of n-BuLi with o-dihalobenzene in diethyl ether)8

and elevated-temperature methods (83 °C decomposition
of benzenediazonium-2-carboxylate in 1,2-dichloroet-
hane).9 The production of o-benzyne was demonstrated
with furan trapping where 1,4-dihydronaphthalene-1,4-
endoxide was detected in 80% yields. Elemental sulfur
was added to trap the in situ-generated o-benzyne and
gave thianthrene 1, pentathiepin 2, trithiole 6, and
tetrathiocin 7 in low overall yields [1 (17.2%), 2 (11.9%),
6 (1.3%), 7 (2.6%)]. Acyclic polysulfanes are probably
formed concomitantly. One of the byproducts obtained,
o-C6H4ClSH (1%), suggests that the o-benzyne precursor,
o-C6H4ClLi, reacts with elemental sulfur and generates
thiolates, which can equilibrate polysulfides. Concentra-
tions of 1, 2, 6, and 7 are identical to within experimental
error with the o-benzyne precursors o-C6H4ClLi or o-C6H4-
CO2

-N2
+, which provide evidence for thermodynamic

product ratios. Pentathiepin 2 displayed a weak molec-
ular ion peak m/z 236 [M+] and a base peak at m/z 172
[M+ - 2S] representing the loss of two sulfur atoms. The
molecular ion of trithiole 6 is abundant and represents
the base peak m/z 172 [M+]. Mass spectrometry was also
used to confirm the presence of thianthrene 1. 1H NMR
data on the o-benzyne sulfuration reaction yielded con-
clusive evidence for the formation of thianthrene 1,
pentathiepin 2, and tetrathiocin 7.10 The expected upfield
chemical shifts for trithiole 6 are obscured by the reagent
and byproduct peaks. The assignment of 2 is based on
two sets of dds: a downfield set at δ 7.85 (2H) and an
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FIGURE 1. Oscillations in the stability of o-benzopolysulfanes
o-C6H4Sx gauged by a fraction of cyclic S8 subtracted from
o-C6H4S8 in an isodesmic reaction, i.e., “relative energy” is the
energy of the reaction o-C6H4S8 f o-C6H4Sx + (8 - x)/8 cyclic
S8. Data shown were obtained with B3LYP/6-31G(d) gas-phase
calculations. The temperature sensitivity of the stability of
polysulfur compounds appears to be small (see Supporting
Information). The perfect linear correlation of energy for
(8 - x)/8 cyclic S8, where x ) 1 to 8, allowed for the study of
o-C6H4Sx heterocycle stability plotted here.

FIGURE 2. Odd-even alternation arising from eclipsing
strain measured in o-C6H4Sx heterocycles based on B3LYP/
6-31G(d) calculations. The dihedral angle of pentathiepin
o-C6H4S5 (73.0°) is used as a reference point from which the
segment S1-S2-S3-S4 in o-C6H4Sx (x ) 4-8), C-S1-S2-
S3 in o-C6H4S3, and C-C-S1-S2 in o-C6H4S2 are compared.
The difference gives rise to the |∆θ| values.
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upfield set at δ 7.34 (2H). Similar chemical shifts are
found for 1 [δ 7.58 (4H); δ 7.32 (4H)] and 7 [δ 8.66 (4H)].

The reaction shown in Scheme 2 stems from the
proposal that benzooctathiecin 5 forms. There was no
direct detection of 5 in the benzyne reaction. However,
experimental evidence for the decomposition of an oc-
tathiecin was obtained by synthesizing 5 and 5′ from the
method of Steudel using ZnS6(TMEDA).11 In the presence
of heat (40 °C) or an added nucleophile n-PrSH in
dicholormethane, gas chromatographic analyses of the
reaction revealed the formation of 2, 6, and 7 and 2′, 6′,
and 7′ from 5 and 5′, respectively (see Supporting
Information). These results provide evidence for the
formation of 5 in the benzyne-Sx reaction and are
consistent with the idea that heat or nucleophiles can
influence the equilibrium between polysulfane com-
pounds,7a,11-13 which offers a reason for the decomposition
of o-C6H4S8 5 under the conditions. Formation of stable
arene annulated polysulfur products from precursor 5
likely occurs by reversible exchange reactions involving
complex mixtures of polysulfanes.

The product distribution also bears on the solubility
of elemental Sx in the benzyne system. The yield of
thianthrene 1 decreased by 17% when the initial cyclic
S8 concentration is varied from 0.8 to 85 mM (Table 1).
Such an effect between o-benzyne and cyclic S8 concen-
tration and the suppression of 1 is consistent with a
reduced o-benzyne trapping of the dithiete intermediate
4 (Scheme 2B). It follows that the ability of 2, 6, and 7 to

form from o-benzyne is enhanced with higher elemental
sulfur concentrations. We find that elemental sulfur is
soluble to the extent of 0.0078 g in 10 g of diethyl ether
at -60 °C, which leads to the conclusion that amounts
of elemental sulfur above ∼10 mM. This result indicates
that a heterogeneous process amplifies the production of
polysulfanes 2, 6, and 7 but not sulfane 1.

In conclusion, this study describes a reaction that can
make ortho-fused polysulfur bonds. We find that the odd-
membered o-C6H4Sx rings (x ) 3, 5, 7) have enhanced
stability compared to the even-membered rings. The
acquisition of odd-even data can reveal patterns on the
stability and the structure of cyclic polysulfanes. The
mechanism of polysulfane product formation appears to
be governed by reversible, equilibrium, exchange pro-
cesses.
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TABLE 1. Product Distribution of o-Benzosulfanes that
Arise from the Cyclic S8 Sulfuration of o-Benzynea-c

a GC/MS and NMR detection of products formed in diethyl ether
at -60 °C after addition of cyclic S8 to o-benzyne. b o-Benzyne
concentration in the reaction is approximately 200 mM. Each entry
is an average of four runs. c Reactions were taken to ∼20%
completion.
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